Header Ads Widget

Laws of Indices

 

The following laws of indices are true for all values of a, b and x not equal to 0 (zero)

·       Xa x Xb = Xa+b

·       Xa x Xb = Xa-b

·       X0 = 1, where X is not equal 0 ( X ≠ 0)

·       X-a = 1/X-a

Example

Simplify (a) 35 X 34    (b) 12X4 ÷ 3X2 (c) 40 (d) 2-4

Solutions

a) 35 x 34 = 35+4 = 39

We know that (3x3x3x3x3) = 35 and (3x3x3x3) = 34 so multiplying both

(3x3x3x3x3) x (3x3x3x3) so if you remove the brackets, you will have

3x3x3x3x3x3x3x3x3 = 39

 

b) 12x4 ÷ 3x2

  =12 /3 x X4-2

   = 4 x X4-2

= 4x2

 

c) 40  = 1

Since x-x = 0

Then 40 = 4x ÷ 4x = 1

 

d) 2-4  = ½4  = 1/16

 

Product of indices (xa)b

Generally,

(Xa)b = Xaxb = Xab

 

Simplify the following indices

a) (X3)4 

b) (a2)4

c) (Q2)5

 

Solutions

a) (X3)4   = X3 x X3 x X3 x X3 =  X12

 Or   (X3)4 = X3x4 = X12

b) (a2)4 = a2 x a2 x a2 x a2  = a8

 

Or

(a2)4 = a2x4 = a8

 

 

c) (Q2)5 = Q2 x Q2 x Q2 x Q2 x Q2  = Q10

 

Or

 

 

(Q2)5 = Q2x5 = Q10

 

Fractional Indices

 

√a is a short form of square root of a. so,

√ a x √ a = √ a x a = a.

So, let

√a = ax

Then ax x ax = √a x √a = a1

 

ax x ax  = a1

ax+x  = a1

a2x = a1  

if you cancel a. from both sides of the equation

2x = 1

X = ½

 

Note

√a = ax

 

Since x = ½ then

 √a =  X1/2 

Similarly,

3√a is a short forum of cube root of a.

 

3√a x 3√a x 3√a = a

 Let 3√a = ap

 

Then ap x ap x ap = a1

 

a.3p = a1

Cancel a from both sizes of the equation

3p = 1

P = 1/3

3√a = a1/3

 

 

 

 

 

Post a Comment

0 Comments