Skip to main content

Application of Gay-Lussac’s Law of Combining Volumes

Gay Lussac’s of combining volumes states that gases react in simple ratio with one another and to volumes of the products provided that temperature and pressure remain constant. In this article, you will understand how to apply this law in calculation by studying the following examples below: 1.     2H 2 + O 2 → H 2 O In the reaction above, what volume of hydrogen would be left over when 300cm 3 of oxygen and hydrogen are exploded in a sealed tube?   1cm 3 of oxygen = 2cm 3 of hydrogen 300cm 3 of oxygen = 2 x 300 = 600cm 3 Volume of left over = 1000 – 600 = 400cm 3 2.     Calculate the volume of carbon (II) oxide required to react with 40cm 3 of oxygen. 2CO + O 2 → 2CO 2 1cm 3 of oxygen = 2cm 3 of CO 40cm 3 of oxygen = 2 x 40 = 80cm 3 3.     Calculate the volume of residual gases that would be produced when 100cm 3 of sulphur (IV) oxide reacts with 20cm 3 of oxygen    2SO 2 + O 2 → 2SO 3 1cm 3 of O 2 = 2cm 3 20cm 3 of O 2 = 2 x 20 = 40cm 3

Pressure in the fluid

       Fluid refers to gases, liquids or anything that flows. When we say pressure in fluid, we are referring to the kind of pressure which fluids exert. So, what is pressure?

                                             Pressure

 Pressure is a force or vertical force per unit area acting on a surface.

It has the following units

        I.            Newton per square metre (Nm-2)

      II.            Pascal (Pa)

    III.            Bar

1 Bar = 105 Nm-2 = 105Pa

Pressure is a scalar quantity which means it has size or magnitude with no direction. Mathematically, pressure can be expressed as

     P = F/A

Where

P= pressure

F= force

A = area

                     Example Question

Calculate the pressure exerted on the ground by a body of mass 90kg on an area 450m2   (g = 10ms-2)

                             Solution

P= F/A

Force = mx g

         = 90x 10 = 900N

Area = 450m2

 Pressure = 900/450

                 = 2Nm-2

 

 

  

Comments

Popular posts from this blog

Application of Gay-Lussac’s Law of Combining Volumes

Gay Lussac’s of combining volumes states that gases react in simple ratio with one another and to volumes of the products provided that temperature and pressure remain constant. In this article, you will understand how to apply this law in calculation by studying the following examples below: 1.     2H 2 + O 2 → H 2 O In the reaction above, what volume of hydrogen would be left over when 300cm 3 of oxygen and hydrogen are exploded in a sealed tube?   1cm 3 of oxygen = 2cm 3 of hydrogen 300cm 3 of oxygen = 2 x 300 = 600cm 3 Volume of left over = 1000 – 600 = 400cm 3 2.     Calculate the volume of carbon (II) oxide required to react with 40cm 3 of oxygen. 2CO + O 2 → 2CO 2 1cm 3 of oxygen = 2cm 3 of CO 40cm 3 of oxygen = 2 x 40 = 80cm 3 3.     Calculate the volume of residual gases that would be produced when 100cm 3 of sulphur (IV) oxide reacts with 20cm 3 of oxygen    2SO 2 + O 2 → 2SO 3 1cm 3 of O 2 = 2cm 3 20cm 3 of O 2 = 2 x 20 = 40cm 3

Qualitative Analysis of inorganic Compound

  This is a type analysis which involves the identification of the ions ( cation and anion) in a given inorganic substance. Thus, Qualitative analysis deals with the identification of the compound. To effectively identify the ions, it is necessary to be able to observe the presence of any chemical reaction which is normally recognized by ·         Colour change ·         Evolution of gas ·         Precipitation      Colour Change : colour change is associated with transition metal ions. The major cause of the colour in transition metal ions is electronic transition within the d-block level. The colour of light which show, is the colour of light which is reflected by the ion. This change of transition metal ions is common when they form a bond with water or ammonia. It is important to note that zinc does not form coloured ion, this is because zinc has completely filled the d orbital, but zinc is yellow when hot and white when cold. Evolution of gas : This is identified by

Qualitative Analysis of Ammonium Trioxocarbonate (IV)

              Ammonium trioxocarbonate(IV) is an electrovalent compound just like any other ammonium salts. As an electrovalent compound, it has NH + (ammonium ion) as the cation and CO 3 2- (trioxocarbonate IV ion or radical) as the anion.                          (NH 4 ) 2 CO 3   -------    2NH 4 + + CO 3 2- Ammonium trioxocarbonate IV is a white crystal salt and it is very soluble in water like all other ammonium salts. It decomposes on heating to produce ammonium, water and carbon (IV)oxide.                      (NH 4 + ) 2 CO 3   ----------   2NH 3(g) + H 2 O (I) + CO 2(g)          Test for the Cation in Ammonium Trioxocarbonate IV To test the unknown sample, put the sample into a boiling tube, add a base or alkali into the boiling tube and heat gently.   Note: All ammonium salts liberate ammonia when heated with base or alkali.         (NH 4 ) 2 CO 3(s) + 2NaOH (aq) ----------   Na 2 CO 3 (aq) + H 2 O (l) + 2NH 3(g) Test the gas liberated with damp li