Skip to main content

Application of Gay-Lussac’s Law of Combining Volumes

Gay Lussac’s of combining volumes states that gases react in simple ratio with one another and to volumes of the products provided that temperature and pressure remain constant. In this article, you will understand how to apply this law in calculation by studying the following examples below: 1.     2H 2 + O 2 → H 2 O In the reaction above, what volume of hydrogen would be left over when 300cm 3 of oxygen and hydrogen are exploded in a sealed tube?   1cm 3 of oxygen = 2cm 3 of hydrogen 300cm 3 of oxygen = 2 x 300 = 600cm 3 Volume of left over = 1000 – 600 = 400cm 3 2.     Calculate the volume of carbon (II) oxide required to react with 40cm 3 of oxygen. 2CO + O 2 → 2CO 2 1cm 3 of oxygen = 2cm 3 of CO 40cm 3 of oxygen = 2 x 40 = 80cm 3 3.     Calculate the volume of residual gases that would be produced when 100cm 3 of sulphur (IV) oxide reacts with 20cm 3 of oxygen    2SO 2 + O 2 → 2SO 3...

How to separate lead ions from a mixture of aluminium ions and zinc ions

 In a qualitative analysis of ions like lead, zinc ions and aluminium ions, these ions show similar reactions with dilute sodium hydroxide solution. They produce white precipitates with a few drops of dilute sodium hydroxide solution, which are soluble in excess dilute sodium hydroxide solution.

 In this article, you will learn how to separate lead ions from a mixture of aluminium ions and zinc ions. Before I go ahead, let me list some reagents that are necessary for the tests:

  • Aqueous ammonia
  • Dilute hydrochloric acid
  • Potassium dichromate solution
  • Potassium iodide solution

Step one: separation of zinc ions from the mixture

To the solution of the unknown compounds, add a few drops of aqueous ammonia, and the formation of white gelatinous precipitate that dissolves in excess aqueous ammonia removes lead ions and aluminium ions as an insoluble compound in the excess aqueous ammonia while zinc remains in the solution.

Step two: separation of aluminium ions from the mixture

Filter the solution from step one above, add dilute hydrochloric acid to the residue, aluminium ions dissolve and lead ions will form a white precipitate which is soluble when hot and insoluble when cool. Note: The insoluble Lead ions are known to be soluble when heated.

Step three: separation and identification of the lead ions

Filter the solution from step two above, add potassium dichromate solution to the residue and heat gently. A yellow precipitate formed, and this yellow insoluble substance confirms the presence of lead ions in the mixture. Or add potassium iodide solution to the residue and gently heat the mixture. A yellow precipitate formed also shows that lead ions are present.

 

 


Comments

Popular posts from this blog

Qualitative Analysis of inorganic Compound

  This is a type analysis which involves the identification of the ions ( cation and anion) in a given inorganic substance. Thus, Qualitative analysis deals with the identification of the compound. To effectively identify the ions, it is necessary to be able to observe the presence of any chemical reaction which is normally recognized by ·         Colour change ·         Evolution of gas ·         Precipitation      Colour Change : colour change is associated with transition metal ions. The major cause of the colour in transition metal ions is electronic transition within the d-block level. The colour of light which show, is the colour of light which is reflected by the ion. This change of transition metal ions is common when they form a bond with water or ammonia. It is important to note that zinc does not form coloured ion, this is because zinc ...

Application of Gay-Lussac’s Law of Combining Volumes

Gay Lussac’s of combining volumes states that gases react in simple ratio with one another and to volumes of the products provided that temperature and pressure remain constant. In this article, you will understand how to apply this law in calculation by studying the following examples below: 1.     2H 2 + O 2 → H 2 O In the reaction above, what volume of hydrogen would be left over when 300cm 3 of oxygen and hydrogen are exploded in a sealed tube?   1cm 3 of oxygen = 2cm 3 of hydrogen 300cm 3 of oxygen = 2 x 300 = 600cm 3 Volume of left over = 1000 – 600 = 400cm 3 2.     Calculate the volume of carbon (II) oxide required to react with 40cm 3 of oxygen. 2CO + O 2 → 2CO 2 1cm 3 of oxygen = 2cm 3 of CO 40cm 3 of oxygen = 2 x 40 = 80cm 3 3.     Calculate the volume of residual gases that would be produced when 100cm 3 of sulphur (IV) oxide reacts with 20cm 3 of oxygen    2SO 2 + O 2 → 2SO 3...

Qualitative Analysis of Ammonium Trioxocarbonate (IV)

              Ammonium trioxocarbonate(IV) is an electrovalent compound just like any other ammonium salts. As an electrovalent compound, it has NH + (ammonium ion) as the cation and CO 3 2- (trioxocarbonate IV ion or radical) as the anion.                          (NH 4 ) 2 CO 3   -------    2NH 4 + + CO 3 2- Ammonium trioxocarbonate IV is a white crystal salt and it is very soluble in water like all other ammonium salts. It decomposes on heating to produce ammonium, water and carbon (IV)oxide.                      (NH 4 + ) 2 CO 3   ----------   2NH 3(g) + H 2 O (I) + CO 2(g)          Test for the Cation in Ammonium Trioxocarbonate IV To test...